![Figure 1. The overall framework of SATrans](/attachments/R92WC39B.png)
Scenario-Adaptive Feature Interaction for Click-Through Rate Prediction
Tencent 2023 KDD | 基于transformer的网络结构实现多场景下的CTR预测,强表征能力、低参数和高解释性
![Preview Image](/attachments/SNR_figure1.png)
SNR: Sub-Network Routing for Flexible Parameter Sharing in Multi-Task Learning
Google 2019 AAAI | 增加可学习的参数实现灵活参数的网络结构
![Hinet consists of Scenario Extraction Layer and Task Extraction Layer.](/attachments/R4X7W9CE.png)
Hinet: Novel multi-scenario & multi-task learning with hierarchical information extraction
Meituan 2023 ICDE | 层次化提取信息的多场景和多任务的推荐系统
![PEPNet consists of Gate NU, EPNet and PPNet.](/assets/posts/PEPNet/overview.png)
PEPNet: Parameter and Embedding Personalized Network for Infusing with Personalized Prior Information
KuaiShou 2023 KDD | 通过多个门单元实现多场景和多任务的推荐系统
![Figure 1: AdaTT-sp and general AdaTT with 2 fusion levels.](/attachments/I6B36N2T.png)
AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations
Meta 2023 KDD | Task-to-Task的融合策略实现多任务学习
Improving Training Stability for Multitask Ranking Models in Recommender Systems
Google 2023 KDD | 解决多任务下精排模型的训练稳定性问题